Soil bacteria diversity and function is influenced by different environments and soil pH

Hannah Wang and Emily J. Diaz Vallejo

Bacteria role in soils

- Soil bacteria are critical for the functioning of ecosystems.
 - Control nutrient and carbon cycling
 - Influence plant productivity

Crowther et al., Science 365, 772 (2019)

Bacteria is affected by environmental factors

- Global distribution of bacteria diversity (richness) and abundance is affected by:
 - Climate
 - Vegetation
 - Soil resources
 - Soil conditions

Soil pH as a soil condition

- Soil pH affect nutrient availability in soils influencing
 - Diversity
 - Abundance
 - Function
- Extreme pH conditions create specialize microbiomes.
 - Influences "who is there".

Research questions

1. How do microbiomes cluster base on environmental conditions?

2. How pH can influence richness, abundance and function?

Methods

Sampling

 Targeted soil microbiomes with soil pH information from Earth Microbiome Project database.

Clustering

- Used Vintage Sparse Principal Component Analyses (VSP)
- Define K = 6

Contextualizing

- Used biomes as an ecosystem (climate, vegetation) and features as soil type (disturbed, weathered, new) classification.
- Used taxonomy and function classification.

Relating

• Related richness, abundance and function to soil pH.

Contextualize by environment

- Many clusters share similar environmental condition.
 - However, the combination of each environmental condition makes each cluster unique.

Contextualize by environme	ental biome and feture					
Weathered	Cold moist	Dry	Short vegetation	Cold dry	Disturbed	
cultivated habitat	tundra	polar desert	vineyard	dry lake	cropland	
forest soil	permafrost	cold temperature habitat	tropical shrubland	tundra	plant-associated habitat	
tropical shrubland	bog	desert	volcano	tundra	cultivated habitat	
volcano	tundra	dry soil	grassland soil	montane shrubland	desert	
tropical moist broadleaf forest	montane shrubland	tundra	grassland	mountain	agricultural soil	
forest	mountain	shrubland	desert	coniferous forest	dry soil	
forest	plant-associated habitat	temperate grassland	forest soil	forest	shrubland	
cropland	taiga	basin	dry soil	plant-associated habitat	bog	
montane shrubland	peatland	rocky desert	montane shrubland	agricultural soil	dry lake	
mountain	pasture	urban	agricultural soil	taiga	temperate grassland	

Some clusters can be described by pH

- Dry cluster pH is very alkaline.
- Short vegetation has a neutral pH
- Weathered and Cold dry clusters are acidic.
- The variability of pH in Disturbed is high.

Richness vs pH per cluster

- No obvious linear relation between pH and species richness.
- Under each cluster, species richness can be explained by general global biomes.

- anthropogenic terrestrial biome
- desert biome
- forest biome
- grassland biome
- shrubland biome
- tundra biome

Phyla composition within each cluster

 Acidobacteria and proteobacteria are common in all clusters.

• Short vegetation has planctomycetes.

Cold dry
 has verrucomicrobia.

Reported: Phyla with higher ratios

Phyla Abundance vs pH per cluster

- anthropogenic terrestrial biome
- desert biome
- forest biome
- grassland biome
- shrubland biome
- tundra biome

Disturbed

- Acidobacteria pH (negative corr.)
- Bacteroidetes pH (positive corr.)

Across environment

- Actinobacteria-pH (positive corr.)
- Acidobactera,
 Actinobacteria Bacteroidetes
 thrive across pH & environment
 (high diversity)

Cluster contextualize by who is there - function

- Common function: decompose organic molecules, e.g., aerobic chemo-
- Some clusters have unique specializations.
 - **Cold moist:** bacteria involve in anoxic carbon decomposition, e.g., methano, Fermentation
 - Dry: bacteria that are dependent on sunlight for energy, e.g., photo-
 - Cold dry: bacteria that hosts in plants as parasites or symbionts
- Weathered, short vegetation and disturbed influence nutrient cycling and decomposition of carbon to CO₂.

Contextualized by Function						
Weathered	Cold moist	Dry	Short vegetation	Cold dry	Disturbed	
nitrate denitrification	nitrate denitrification	aerobic chemoheterotrophy	nitrate denitrification	iron respiration	aerobic chemoheterotrophy	
aerobic chemoheterotrophy	nitrogen fixation	chitinolysis	aerobic ammonia oxidation	fermentation	aerobic ammonia oxidation	
nitrogen fixation	iron respiration	aerobic ammonia oxidation	aerobic chemoheterotrophy	nitrate denitrification	nitrate denitrification	
aerobic ammonia oxidation	methanotrophy	photosynthetic cyanobacteria	aerobic nitrite oxidation	nitrogen fixation	methanol oxidation	
xylanolysis	methanogenesis	manganese oxidation	chitinolysis	aerobic chemoheterotrophy	xylanolysis	
chitinolysis	fermentation	nitrogen fixation	nitrogen fixation	methanotrophy	chitinolysis	
aerobic nitrite oxidation	methanol oxidation	photoheterotrophy	iron respiration	methanogenesis	ureolysis	
invertebrate parasites	methanogenesis	xylanolysis	manganese oxidation	animal parasites/symbionts	manganese oxidation	

Function Abundance vs pH per cluster

- anthropogenic terrestrial biome desert biome
- forest biome
- grassland biome
- shrubland biome
 - tundra biome

- Aerobic ammonia oxidation
- Short Veg. / Disturbed: higher in alkaline soil (due to available ammonia amount)
- Dry: volatization of ammonia may cancel out
- Aerobic chemoheterorophy
- Disturbed / Cold dry / Cold moist: positive correlation
- Nitrate denitrification
- Disturbed: negative correlation
- Overall, under disturbed, pH can be a key driver for multiple functions

Conclusion

• Different environments and soil pH can influence microbial community functions.

 This is important because microbial functions can influence ecosystem dynamics, including plant productivity and nutrient cycling.

• By understanding microbial diversity and functional changes in different environments and soil pH, we can better understand changes in carbon cycling that could be influencing global climate changes.

Appendix

Linear model summary (log(abundance)~pH, by phyla-cluster)

cluster	PHYLUM	pval	estimate
Weath.	Acidobacteria	0.034	0.046
Weath.	Actinobacteria	0.029	-0.056
Weath.	Proteobacteria	0.000	-0.129
Cold M.	Acidobacteria	0.001	-0.215
Cold M.	Actinobacteria	0.000	0.239
Cold M.	Bacteroidetes	0.803	-0.008
Cold M.	Proteobacteria	0.000	0.069
Dry	Acidobacteria	0.346	0.053
Dry	Actinobacteria	0.001	0.161
Dry	Bacteroidetes	0.058	-0.043
Dry	Proteobacteria	0.001	-0.102

cluster	PHYLUM	pval	estimate
Short V.	Acidobacteria	0.426	-0.015
Short V.	Bacteroidetes	0.023	0.082
Short V.	Planctomycetes	0.000	0.213
Short V.	Proteobacteria	0.573	0.010
Cold D.	Acidobacteria	0.123	-0.083
Cold D.	Bacteroidetes	0.001	0.159
Cold D.	Proteobacteria	0.844	0.005
Cold D.	Verrucomicrobia	0.060	-0.097
Disturb.	Acidobacteria	0.000	-0.175
Disturb.	Actinobacteria	0.000	0.124
Disturb.	Bacteroidetes	0.000	0.119
Disturb.	Proteobacteria	0.622	-0.009

Linear model summary (log(abandance)~logpH, by function-cluster)

cluster	func	pval	estim.	cluster	func	pval	es
Weath.	aerobic chemo-	0.000	-0.310	Short V.	aerobic ammonia oxidation	0.000	
weath.	heterotrophy	0.000	-0.310	Short V.	aerobic chemo- heterotrophy	0.000	
Weath.	fermentation	0.000	-0.211	Short V.	aerobic nitrite oxidation	0.007	
Weath.	nitrate denitrification	0.511	-0.016	Short V.	fermentation	0.199	
Weath.	nitrogen fixation	0.000	-0.149	Short V.	nitrate denitrification	0.291	
Cold M.	aerobic chemo-	0.000	0.542	Cold D.	aerobic chemo- heterotrophy	0.000	
	heterotrophy			Cold D.	animal parasites or symbionts	0.901	
Cold M.	fermentation	0.004	-0.152	Cold D.	fermentation	0.129	
Cold M.	iron respiration	0.007	0.186	Cold D.	intracellular parasites	0.620	
Cold M.	methano-genesis by CO2	0.000	-0.273	Cold D.	iron respiration	0.171	
Cold M.	nitrate denitrification	0.000	-0.275	Cold D.	nitrate denitrification	0.706	
Cold M.	nitrogen fixation	0.000	-0.394	Cold D.	nitrogen fixation	0.442	
Dry	aerobic ammonia oxidation	0.530	-0.049	Disturb.	aerobic ammonia oxidation	0.000	
Dry	aerobic chemo- heterotrophy	0.989	0.000	Disturb.	aerobic chemo- heterotrophy	0.000	
Dny	photosynthetic	0.087	-0.239	Disturb.	fermentation	0.001	
Dry	cyanobacteria	0.067	-0.233	Disturb.	nitrate denitrification	0.000	

Function abundance within each cluster

• In all clusters the most abundant functions are related to decomposition processes.

