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Introduction  

Bacteria are critical for the functioning of the ecosystem at different scales. Important             
nutrient cycles such as nitrogen, phosphorus, and carbon depend on bacteria in            
soils. In addition, bacteria can have symbiotic and pathogenic associations with           
plants that can influence plant productivity and vegetation composition. Studying soil           
bacteria under different environmental factors and soil conditions is important to           
understand ecosystem dynamics.  

Moreover, Bateria can be affected by climate, vegetation, soil resources, and soil            
conditions. Subsequently, we can find different patterns of bacteria diversity and           
abundance globally. As an important factor of soil condition, soil pH has been             
significantly important in explaining bacteria diversity, abundance, and functions.         
Motivated by Bacteria’s critical role in the ecosystem, here we analyzed data from the              
Earth Microbiome Project and observed that soil bacteria diversity and function are            
influenced by different environments and soil pH.  

Data description 

Earth Microbiome Project (EMP) used a systematic approach to characterize          
microbial taxonomic and functional diversity across different environments and         
humankind (Thomson et al., 2017). EMP comprises 27,751 samples from 97 studies            
with microbial data representing 16S rRNA amplicon sequencing, metagenomes, and          
metabolomics. For this study, we used the data that had been rarefied by EMP. The               
dataset was further split into an operational taxonomic unit (OTU) table, a sample             
table, and a metadata table. Below is the column information for each table.  

(a) OTU table: ID, Sequence, Kingdom, Phylum, Class, Order, Family, Genus, and           
Species. 

(b) Sample table: ID and Sample Name. 
(c) Metadata table: 76 environmental information from each sample. For this report,           

we used Sample ID, Environment Biome, Environment Feature, and soil pH.  

To identify functionality by taxonomy we used the FAPROTAX database (Louca et.            
al., 2016). FAPROTAX used bacteria and archaea genera and species taxonomic           
information to assign metabolic and other relevant functions. The database consists           
of information collected by published literature on cultured strains. In total, it contains             
over 80 functions, 7,600 annotations, and more than 4,600 taxa. This database was             
created as an alternative to expensive methodologies like shogun sequencing for           
functional community profiling.  
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Methods 

(1) Data pre-processing 

In order to focus on the soil environment, we subsetted for ​soil and rhizosphere              
samples from the EMP database. Moreover, OTUs with a prevalence of at least ten              
samples were chosen. The selected data was used to build an OTU-sample bipartite             
adjacency matrix, named ​A​. ​Aij = x represented ​x number of OTU ​i were observed in                 
sample ​j​. Then, the non-zero entries went through square-root transformation for           
variance stabilization. The “A” matrix had a dimension of 116,658 rows and 945             
columns (i.e. 116,658 kinds of OTUs collected from 945 sample sites). Figure 1             
shows the overall OTU abundance distribution. The right-skewed distribution         
indicated that some OTUs were more abundant than others, which is natural in             
microbial ecosystems. 

 

Figure 1. Histogram of OTU abundance for A matrix 

(2) Clustering OTU-Sample graph into communities 

We used Vintage Sparse PCA (VSP) to cluster the graph into 6 communities with the               
R ​vsp package. Six was chosen because there are 6 levels of biome label (defined in                
the next session) across the whole EMP database. As we hoped to estimate the βs               
in the Latent Dirichlet Allocation (LDA) model (Rohe and Zeng 2020) to obtain the              
relative phyla or function abundance, we operated vsp on the centered and scaled             
adjacency matrix .  

(3) Contextualizing clusters with environmental factors 

The “best feature function” or ​bff from the ​vsp R-package was used for             
contextualization. The bff function requires an ​n by ​k matrix of the weights that              
indicates how important “​i”th node is for the “​j”th cluster​, an ​n by ​d matrix that                
contains features for each node in the network, and a number indicating how many              
features for differentiating between loadings.  

It was expected that sample sites with similar OTU composition will be clustered             
together. Thus, ​the Y ​matrix was used as the n by ​k ​loading matrix, and the ​n ​by ​d                   
feature matrix was created from the metadata table, which contained the           

 



environmental information of each sample site. In particular, two variables were           
chosen: ​environmental biomes ​and ​environmental features​. The ​biome data         
classified the environment as a habitat related to plants, animals, and climate (e.g.,             
Tropical forest, temperate grassland). The feature data classified the environment as           
a particular component of the environment where the sample was collected (e.g.,            
soil, coral, bay). 

Discussions 

(1) Clusters 

According to Figure 2. (unit of analysis: 1 sample), overall, radial streaks aligned well              
with the axis. Moreover, the B matrix was rather diagonal, indicating that ​OTUs from              
OTU cluster i ​(​Zi) ​mainly exist in ​Samples from ​sample cluster i (Yi)​. Thus, it was                
reasonable to conclude that there were approximately 6 communities in the bipartite            
graph. Moreover, from Table 1., through contextualization with environmental biomes          
and features, we could give each cluster a meaningful name: weathered, cold moist,             
dry, short vegetation, cold dry, and disturbed soil environment.  

  

Figure 2. Cluster result diagnosis: left: Cluster pair plot; Right: B matrix 

 

 Table 1. Contextualization by environmental biome and feature 

 

(2) Soil pH distribution by cluster 

To better characterize the communities, the distribution of pH values among clusters            
was examined in Figure 3. The red dots in each box were the average pH values.                
Overall, soil pH average and variability differed among clusters. “Dry” cluster had a             
higher pH than any other cluster. “Weathered”, “Coild moist” and “Cold dry” had             

 



acidic pH. “Disturbed” and “Short vegetation” had average neutral pH; however,           
“Disturbed” cluster showed great variability of pH values. The association between           
cluster and soil pH indicated that the role of pH may vary with circumstances.              
Specifically, the “Dry” cluster could be significantly influenced by soil pH.  

  

Figure 3. pH distribution of each cluster  

(3) Species richness related to pH per cluster 

To see if pH was an influential factor to diversity, we compared the species richness               
of each cluster with pH, as displayed in Figure 4. None of the clusters showed a                
linear relation between richness and pH. However, if we group the richness value by              
general biomes we could see some pattern that could explain the variability of             
richness within each cluster. In the short vegetation cluster, anthropogenic biomes           
had high richness, while shrublands had low richness. In the weathered cluster,            
anthropogenic biomes had high variability of richness but mostly in acidic pH values,             
while forests and shrublands had average richness in neutral pH. 

 

Figure 4. pH-Species Richness by cluster  

 



(4) Most abundant phyla for each cluster and their relations with pH 

To further investigate the microbial community structure, instead of examining the           
overall species richness, phyla abundance may provide more insights, as shown in            
Figure 5. Across clusters, the Acidobacteria and Proteobacteria were of the top            
abundant phyla, corresponding to the fact that these two phyla are commonly seen in              
nature across various environments.  

Aside from the commonality, there were phyla that are relatively abundant under            
specific conditions. For example, under "Short vegetation", Planctomycetes wes         
more abundant, possibly relating to the fact that they can participate in degrading             
plant-derived polymers which are rich in short vegetation soil. Under "Cold dry",            
Verrucomicrobia were more prominent, aligning with the reason that Verrucomicrobia          
are one of the few phyla that still thrive under extreme icy conditions.  

 
Figure 5. Phyla abundance of each cluster  

(bars with abundance > 8% are encoded in red) 

As phyla with low abundance were not of our interest, for each cluster, Figure 6 only                
showed the relationship between top most abundant phyla and pH. For example,            
under the "Weathered" environment, more abundant Bacteria (defined as > 8%) were            
Acidobacteria, Actinobacteria, and Proteobacteria; thus, only these were shown.  

Overall, Acidobacteria, Actinobacteria, and Bacteroidetes thrived across pH and         
various environments due to the fact that these three phyla consist of highly diverse              
bacteria, and thus can live under all kinds of soil conditions. In particular,             
Actinobacteria abundance and pH were positively correlated. Other obvious trends          
between pH and phyla abundance were observed under the "Disturbed"          
environment. Acidobacteria and pH were negatively correlated, while Bacteroidetes         
and pH were positively correlated. 

 



  

Figure 6. pH-phyla abundance by cluster 

(5) Function for each cluster and their relations with pH  

With the taxonomic path information, microbial function can be further mapped. Table            
2. displayed the top related functions for each cluster. Common microbial functions            
across soil environments were those responsible for organic molecules         
decomposition, e.g. aerobic chemoheterotrophy. “Weathered”, “Short-vegetation”,      
and “Disturbed” environments had microbiomes that influence nutrient cycling (e.g.          
functions prefixed with nitrate, nitrite, nitrogen, and ammonia) and decomposition of           
carbon to carbon dioxide.  

On the other hand, some clusters had unique specializations. “Cold moist” soil            
consisted of bacteria involved in anoxic carbon decomposition, e.g. methanotrophy,          
and fermentation. Specifically, methane is a green-house gas that is 84 times more             
potent than carbon dioxide in terms of heating up the earth. Thus, it is beneficial that                
under the cold moist environment, one of the vulnerable places deeply influenced by             
climate change, have these bacteria working to balance the methane concentration.           
Alternatively, under “Cold Dry” environments, aside from methane-related bacteria,         
there exist bacteria that live in plants as parasites or symbionts. Another obvious             
specialty is the "Dry" cluster, which contained bacteria that are dependent on sunlight             
for energy, e.g. photosynthetic cyanobacteria and photoheterotrophy.  

Table 2. Contextualization by Function 

 

For each cluster, Figure 7. showed the relationship between pH and more abundant             
microbial functions. Under specific circumstances, there were some functions that          

 



had clearer relationships with pH value. For example, under “Short-vegetation” and           
“Disturbed” environments, aerobic ammonia oxidation function was richer in alkaline          
soil (i.e. higher pH). The reason may be that this function requires the consumption of               
ammonia, and ammonia can have a higher concentration in an alkaline environment.            
However, under the “Dry” environment, the trend was not observed. One of the             
reasons may be that ammonia will volatize, and thus cancel out its higher             
concentration in the alkaline soil.  

While ammonia oxidation consumes ammonia, nitrate denitrification assists the         
formulation of ammonia. It follows that under “Disturbed” environment, we could           
observe a negative correlation between pH and nitrate denitrification abundance.          
Aerobic chemoheterotrophy on the other hand was commonly more abundant with           
the increase of pH, and the relationship could be seen in “Disturbed”, “Cold dry”, and               
“Cold moist” environments. Overall, under the “Disturbed” environment, pH could be           
a key driver for multiple functions.  

 

Figure 7. pH-function abundance by cluster 

Conclusion 

Different environments and soil pH can influence microbial community functions. This           
is important because microbial functions can affect ecosystem dynamics, including          
plant productivity and nutrient cycling. Any change in the environment or soil pH may              
affect microbial diversity or functionality and lead to changes in ecosystem           
processes. By understanding microbial diversity and functional changes in different          
environments and soil pH, we can better understand changes in nutrient cycling like             
nitrogen, phosphorus and carbon that could be influencing global climate changes 
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