Crossllnkmg and Carbonization of Electrospun ngnosulfonate Flber

Results & Discussior

Submicron-sized fiber of lignosulfonate can be : - -
electrospun from aqueous solution, signifying the Morphology study: Scanning electron microscopy (Jeol JSM 6510) at 15 kV

possibility of green processing for biobased As-spun Heated at 140°C Heated at 300°C
polymer. The resulted fiber, however, IS - * ———
susceptible to the influence of water, which limits

Its use for wet applications such as water

filtration. Lignosulfonate-PEO
(95:5 by weight)

This poster reports our ongoing efforts in utilizing (RS I VI By ¥ _ 
lignin waste for aqueous filtration and related i it Ve
applications by conversion to electrospun fiber

1) Investigate the effects of crosslinking on the
water  resistance  of  electrospun  fiber.
2) Study thermal stability of the crosslinked fiber, ? It : _
paving the way for facilitating its further
conversion to carbon fiber and related products.
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Note: The fiber on the spun
mat surface of citric acid-
containing formulation
fused together, probably due
to Increased moisture
uptake of carboxyl groups
prior to (ester) crosslinking.
Humidity control Is needed.
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Lignosulfonate-citric
acld-PEO (76:19:5
by weight)

Materials and Methods I\/|0|stu re uptake test: 95+1% at 230(3 In Terchy environmental test chamber
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e Spinning material: 1) Sodium lignosulfonate 120 | eI N 120 | epenemr T ©
from hardwood (Borregaard); M,, 8,000 g/mol S * 100 1|
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» Additive: 1) Poly(ethylene oxide) as fiber S 60 S 60 if
. - . 540 i 3 40
form_er_, sup_plled by Acros; My, 600,000 g/mol :0 S — 2 o amsiner
2) Citric acid (Showa) as biobased crosslinker = ~+-No crossinker; 300C | + 25% crosslinker
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HO 803 Conditioning time (hour) aw Conditioning time (hour) 19 Xliner 2 Xlle
A R=H or LS: J(o \/4\ Observation: Moisture resistance can be induced by either chemical crosslinking (140°C) or thermal
—B A=0,H,orlLS; OH oxlidative crosslinking (300°C). Crosslinking prevents dissolution. Citric acid at the tested dosages reduced
B =H, OCHj, orls moisture uptake by up to 40% (versus 20% in oxidative) after 24-h exposure.
HsCO OR Poly(ethylene oxide) _ _ _ _ _
Lignosulfonate (LS) (PEO) Thermogravimetric analysis (TGA): Inference on carbonization
LS structure modified from: Ye et al. (2017) BioResources 12(3):4810-4829. o e Instrument: Mettler-Toledo TGA/SDTA85¢; 10°C/min In nitrogen _
o o _ b | T o rate | WL 108s (%) | Wi. loss (%) | Char (%) at Note: The char yields of
* Spinning condition: AQqueous solution (15-20% R (°C) 170-375°C | 375-700°C 700°C spun fibers d(_) nc_)t diff_er
solid content) of 0.03 mL/min flow rate 270 . 257 37 9 49 much. Crosslinking with
- 5. Lignosulfonate citric acid resulted in
horizontally spun at 20 kV (EL50P0 Glassman ;o | S-PEO (95:5) 256 34 11 46 maximum degradation
High voltage) onto a rotating (250 rpm) drum (15 o LS-PEO-citric acid| 283 35 9 46 rate™ occurring at a higher
cm width) that 1s 20 cm away from the injector o (76:5:19) temp (also higher than
- " - . 0 20 a0 w0 s ain rie mo | LCILrIC ACIO 229 - > 16 | that of citric acid alone).
¢ Cl‘OSSllnklng Condltlon: ChemICa| CI’OSS|InkIng Temperature (°C) *From DTGA; see example plots in DSC section
(citric acid 140°C for 2h) or, for references, _ _ _ _
(1) no crosslinker but heated In the same manner, Differential scanning calorimetry (DSC)

Instrument: Mettler-Toledo DSC823¢; 10°C/min; the second temperature ramp curves were analyzed

(11) conventional oxidative crosslinking (in this

case, heating at 1°C/min; 300°C for 30 min) 0 o0 f;;“ pig“rié? w02 0 122"“’:??;”’25;"’ wo w0 Attempts to examine manifestation of crosslinking

o _ _ o _ W | - was hz_impered by vague_transnlons and broad

Anticipated reaction with citric acid o O . o peaks in DSC curves of lignosulfonate. Peaks at

o0. OH 2 ' 23 %A o ~100°C was due to residual water removal [,

O A 5 (02 - 3 02) R Above 170°C (up to 250°C measured), larger

m /HO'(LS) Heat f» \m W i: ':""".L _0_22§ exothermic peaks corresponding to DTGA peaks

HO on O ~— L. L $% 0 i ;}2? 2 are seen, suggesting liberation of degraded
Citric acid (CA) - ;&(’)TJFSXW H,0 . S —— : ey % J -0.24 products from thermal degradation.

0.4) —19%CA DTGA e (0.4) - :éif@i“oiic " 096 121 Da Silva et al. (2012) TAPPI 11(9):41-49.
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m Heat m Note: DTGA data are presented here to possibly relate DCS profile to thermal degradation
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Crosslinked Conclusions

lignosulfonate _ _ . . . : : : :
X We succeeded In using a biobased crosslinker to resist dissolution and improve water resistance of
_ _ S lignosulfonate. The electrospinning protocol for preparing the crosslinked fiber has yet to be refined.
This process involves heating in air (or oxygen) at a Efforts are underway to spin the fiber on porous supporting materials for aqueous filtration tests.
slow rate to induce demethoxylation reactions,
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Concept of oxidative crosslinking




