Getting started with Machine Learning (One-hour version)

Hannah Wang (credits to Prof. John Lafferty)

SCOPE SIG + YEDSI

SPRY: A Learning Community for Quantitative Skill-Sharing

Slack Channel: bit.ly/3TqANgR

Listserv: Contact nathalie.sommer@yale.edu

Got an idea for a future event? Drop us a message.

Outline

- Machine learning concepts
 - Paradigm: Supervised / Unsupervised
 - Task: Classification / regression
 - Stochastic gradient descent
 - Cross-validation
- Demo and pipeline

Machine Learning

- Machine (Computers) + Learn, analogous to human + Learn
- Learn through Data and Algorithms to imitate what human beings do

Machine learning concept - Paradigm

(Supervised / Unsupervised / Reinforcement learning / etc.)

Supervised Learning (learn with labeled data):

- Given a set of data points (x, y), learn the function to predict label y using x, where x would have some features
- E.g., income prediction based on year of education (feature)

Unsupervised Learning (learn with unlabeled data):

- Given a set of data points with x (no labels y), learn underlying structure of the data or relationships of x
- E.g., Cluster flowers into categories based on petal width & sepal length (i.e., each data point x has two features)

Machine learning concept - Task

(Regression / Classification, both can be supervised or unsupervised, here, for simplicity: supervised)

Collect data as a matrix: $X = (x_1 x_2 \dots x_{30})$, each x_i has 2 features (education, seniority). Given X:

Regression:

- Predict real or continuous response y, e.g., Income
- Assume relationship expressed as:
 y = f(X) + error
- f(.) can be any function/model:
 - linear regression: fit straight line through data
 - k-nearest neighbor: average together the y_i for x_i close to a fix x
 - etc.

The Income dataset:

	Education	Seniority	Income	Income group
x ₁	21.58621	113.1034	99.91717	1
X ₂	18.27586	119.3103	92.57913	1
_	12.06897	100.6897	34.67873	0
₽,	17.03448	187.5862	78.70281	1
	19.93103	20.0000	68.00992	1
	18.27586	26.2069	71.50449	1

Information for 30 simulated individuals.

Classification: (more later!)

- Predict discrete response y (e.g, high income group, label 1; 0 o/w)
- With classification rule (h): input X to h (i.e., h(X)) \rightarrow assign a class to each data point according to your rule
- h(.) can be any rule/model:
 - Bayes decision rule
 - Support vector machine
 - etc.

Machine learning concept - Models..

- f(.) and h(.) are some sort of models, determined by sets of parameters (coefficients)
- E.g., $y = f(.) = \text{linear model} = \beta_0 + \beta_1 x$; coefficients are: β_0 , β_1
- Questions:
 - Given a dataset, many possible models to choose from, which should we choose?
 - → cross validation
 - Within one type of model (e.g., linear), there are many possible combinations of coefficients (e.g., β_0 , β_1), how to get the optimal ones?
 - → optimization techniques, e.g, Stochastic gradient descent (SGD, basis of complicated algorithms)

Education

Machine Learning concept - SGD

- Example: linear regression
- Objective: minimize the discrepancies between predicted label (ŷ, blue) and observed label (y, red)
- One way to write:
 - $\circ \qquad \hat{y} = \hat{\beta_0} + \hat{\beta_1} x$
 - Want betas to Minimize $\frac{1}{n} \sum_{i=1} (y_i \hat{y_i})^2$ (mean squared error, depending on **complexity** of model)
 - To find the betas: SGD algorithm
- SGD:
 - Read data item x
 - ² Make a prediction $\hat{y}(x) = \sum_{j=1}^{p} \beta_j x_j$
 - Observe the true response/label y
 - I Update the parameters β so \hat{y} is closer to y

β

What we've done...

- Train a model that performs (fits) well on predicting for the data we have
- Issue: might be **overfitting**, meaning the model fits training data well and generalize poorly on unseen data
 - Because it minimizes the discrepancies between training data's observed label y and predicted y
- One way to guard against overfitting: cross validation, it helps
 - Choose parameters (coefficients) for the models
 - Select between different models
 - Assess model performance (cross-validation err)

Machine Learning concept: Cross - validation

We've been doing this:

- Divide dataset randomly into a training set and a validation set.
- Pit the model on the training set.
- O Use the validation set to obtain estimated test error.
- Repeat!

Machine Learning concept: Cross - validation (K-fold)

- Randomly divide the dataset into k folds.
- For b = 1, ..., k:
 - Use b-th fold ("batch") as validation set.
 - Use everything else as training set.
 - Compute validation error on b-th fold.
- Estimate test error using:

$$CV_{(k)} = \sum_{b} \frac{n_b}{n} MSE_b,$$

where n_b is the total # observations in the *b*-th fold, and *n* is the total # observations in the entire dataset.

Iteration								
Obs	1	2	3	4		k		
1	valid	train	train	train		train)		
2	valid	train	train	train		train {fold		
3	valid	train	train	train	0.777	train		
4	train	valid	train	train		train		
n – 2	train	train				valid		
n-1	train	train	1.2.2			valid > fold		
n	train	train				valid		
MSE	MSE ₁	MSE ₂	MSE ₃	MSE ₄	9.7.2	MSE _k		

Same idea applies to classification

- Example: predict for 2 classes, label: {0: non-setosas, red, 1: setosas, black}
- Recall
 - Need classification rule (e.g., Bayes rule)
 - Desirable property for the Bayes rule:
 - at the boundary for classification (called: decision boundary), the data is equally likely to be classified into class 0 and class 1
 - To the left of the decision boundary: likely to be classified to class 1
 - To the right of the decision boundary: likely to be classified to 0
- One way to map data to the "Likelihood":
 - Logistic regression

Iris setosa (Left), Iris versicolor (Middle), and Iris virginica (Right).

Petal.Width

Logistic regression

- Map data to likelihood (softmax)
- Define p(x) = P(Y = 1|X=x)

• This softmax has decision boundary $\beta_0 + \beta_1 x = 0$, because:

 $\hat{p}(x)$

When
$$\hat{\beta}_0 + \hat{\beta}_1 x = 0$$
, $\frac{\hat{p}}{1-\hat{p}} = 1$, so $\hat{p} = 0.5$.

- To the left of the decision boundary: likely to be classified to class 1 (black, setosas); right of the decision boundary, likely to be classified to class 0 (red, non-setosas)
- x = 2.5; many possible betas, need parameter tuning like before

0.8

0.4

0.0

Petal.Width

Demo (& Pipeline)

• Google colab: <u>shorturl.at/clNPS</u>

